

CY62167E MoBL[®]

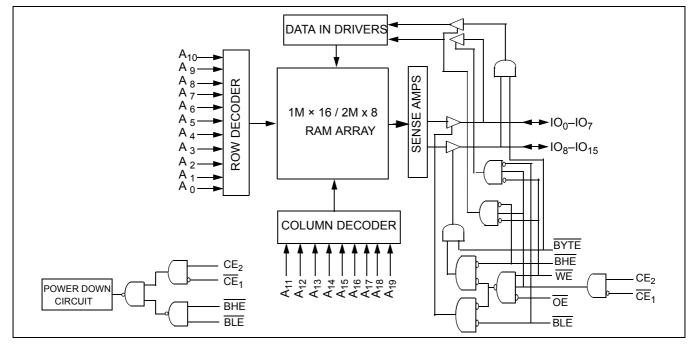
16-Mbit (1M x 16 / 2M x 8) Static RAM

Features

- Configurable as 1M x 16 or as 2M x 8 SRAM
- · Very high speed: 45 ns
- Wide voltage range: 4.5V–5.5V
- · Ultra low standby power
 - Typical standby current: 1.5 μA
 - Maximum standby current: 12 μA
- · Ultra low active power
- Typical active current: 2.2 mA @ f = 1 MHz
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} features
- · Automatic power down when deselected
- · CMOS for optimum speed and power
- Offered in 48-pin TSOP I package

Functional Description^[1]

The CY62167E is a high performance CMOS static RAM organized as 1M words by 16 bits/2M words by 8 bits. This device features advanced circuit design to provide an ultra low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down feature that reduces power consumption by 99% when addresses are not toggling. Place the device into standby mode when deselected


Logic Block Diagram

 $(\overline{CE}_1 \text{ HIGH}, \text{ or } CE_2 \text{ LOW}, \text{ or both } \overline{\text{BHE}} \text{ and } \overline{\text{BLE}} \text{ are } \text{HIGH}).$ The input and output pins $(IO_0 \text{ through } IO_{15})$ are placed in a high impedance state when:

- The device is deselected (\overline{CE}_1 HIGH or CE_2 LOW)
- Outputs are disabled (OE HIGH)
- Both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH) or
- <u>A write operation is in progress</u> (\overline{CE}_1 LOW, CE_2 HIGH, and \overline{WE} LOW)

To write to the device, take Chip Enables (\overline{CE}_1 LOW and CE_2 HIGH) and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from IO pins (IO₀ through IO₇), is written into the location specified on the address pins (A₀ through A₁₉). If Byte High Enable (BHE) is LOW, then data from the IO pins (IO₈ through IO₁₅) is written into the location specified on the address pins (A₀ through A₁₉).

To read from the device, take Chip Enables (\overline{CE}_1 LOW and CE₂ HIGH) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on IO₀ to IO₇. If Byte High Enable (BHE) is LOW, then data from memory appears on IO₈ to IO₁₅. See the "Truth Table" on page 10 for a complete description of read and write modes.

Note

1. For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.

198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised June 07, 2007

Pin Configuration^[2, 3]

48-Pin TSOP I Top View

0	
A15 🗖 1	48 🗖 A16
A14 = 2 A13 = 3	47 B YTE 46 U Vss 45 D IO15/A20
A13 🚽 3	46 🗖 Vss
A12 🖬 4	45 IO15/A20
A12 = 4 A11 = 5	44 🗖 107
A10 🗖 6	43 m 1014
A9 🗖 7	42 🗖 106
A8 🖴 8	41 🗖 1013
A19 🗖 9	41 = 1013 40 = 105
NC 🖿 10	39 🖬 1012 38 🖬 104 37 🗖 Vcc
$\begin{array}{c} NC = 1 \\ WE = 11 \\ CE_2 = 12 \\ NC = 13 \\ WE = 13 \\ WE = 13 \\ WE = 14 $	38 - 104
CE ₂ = 12	37 🗖 Vcc
NC 🖬 13	36 🗖 1011
BHE 🗖 14	35 🗖 103
BLE 🗖 15	34 🗖 IO10
A18 🗖 16	33 🗖 102
A17 = 17	32 🗖 109
A7 🗖 18	31 🗖 101
A6 🗖 19	30 🗖 108
A5 🗖 20	29 🗖 100
A4 🗖 21	29 = 100 28 = OE
A3 🗖 22	27 🗖 Vss
A2 = 23	26 🗖 CE1
A1 🗖 24	25 🗖 A0

Product Portfolio

							Power Di	ssipation		
Product	V	_{CC} Range (V)	Speed (ns)	Operating I _{CC} (mA)			Standby I (
				(-)	f = 1 MHz f = f _{max}		Standby I _{SB2} (μΑ)			
	Min	Typ ^[4]	Мах		Typ ^[4]	Мах	Typ ^[4]	Мах	Typ ^[4]	Мах
CY62167ELL	4.5	5.0	5.5	45	2.2	4.0	25	30	1.5	12

Notes

NC pins are not connected on the die.
 NC pins are not connected on the die.
 The BYTE pin in the 48-TSOPI package must be tied to V_{CC} to use the device as a <u>1M X 16 SRAM</u>. The 48-TSOPI package can also be used as a 2M X 8 SRAM by tying the BYTE signal to V_{SS}. In the 2M x 8 configuration, pin 45 is A20, while BHE, BLE and IO₈ to IO₁₄ pins are not used.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC}(typ), T_A = 25°C.

CY62167E MoBL[®]

Maximum Ratings

Electrical Characteristics Over the Operating Range

Exceeding the maximum ratings may shorten the battery life of the device. User guidelines are not tested.			
Storage Temperature	.–65°C to + 150°C		
Ambient Temperature with Power Applied	.–55°C to + 125°C		
Supply Voltage to Ground Potential	–0.5V to 6.0V		
DC Voltage Applied to Outputs in High-Z State ^[5, 6]	–0.5V to 6.0V		

DC Input Voltage ^[5, 6]	–0.5V to 6.0V
Output Current into Outputs (LOW)	
Static Discharge Voltage (MIL-STD-883, Method 3015)	>2001V
Latch Up Current	>200 mA

Operating Range

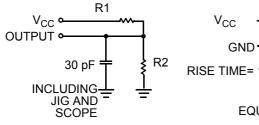
Device	Range	Ambient Temperature	V _{CC} ^[7]	
CY62167ELL	Industrial	–40°C to +85°C	4.5V to 5.5V	

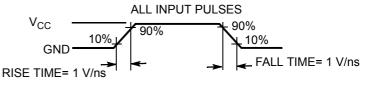
Parameter	Description	Test Conditions		11		
	Description	Min	Typ ^[4]	Мах	Unit	
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1mA			0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 4.5V to 5.5V	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage	V _{CC} = 4.5V to 5.5V	-0.5		0.7 ^[8]	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	-1		+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled	-1		+1	μA
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$ $V_{CC} = V_{CC}(max)$		25	30	mA
	Current	f = 1 MHz I _{OUT} = 0 mA CMOS levels		2.2	4.0	mA
I _{SB2} ^[9]	Automatic CE Power Down Current—CMOS Inputs	$\label{eq:cell} \begin{split} \overline{CE}_1 &\geq V_{CC} - 0.2 \text{V or } CE_2 \leq 0.2 \text{V}, \\ V_{\text{IN}} &\geq V_{CC} - 0.2 \text{V or } V_{\text{IN}} \leq 0.2 \text{V}, \\ \text{f} &= 0, \ V_{CC} = V_{CC(\text{max})} \end{split}$		1.5	12	μA

Capacitance^[10]

Parameter	Description	Test Conditions	Мах	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, f = 1 MHz,	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance^[10]


Parameter	Description	Test Conditions	TSOP I	Unit
Θ_{JA}	Thermal Resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	60	°C/W
Θ _{JC}	Thermal Resistance (junction to case)		4.3	°C/W

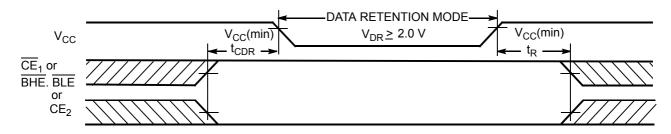

Notes

<sup>Notes
5. V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
6. V_{IH}(max) = V_{CC} + 0.75V for pulse durations less than 20 ns.
7. Full Device AC operation is based on a 100 μs ramp time from 0 to V_{CC} (min) and 200 μs wait time after V_{CC} stabilization.
8. Under DC conditions the device meets a V_{IL} of 0.8V. However, in dynamic conditions Input LOW Voltage applied to the device must not be higher than 0.7V.
9. Only chip enables (CE₁ and CE₂), byte enables (BHE and BLE) and BYTE need to be tied to CMOS levels to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
10. Tested initially and after any design or process changes that may affect these parameters.</sup>

AC Test Loads and Waveforms

EQUIVALENT TO: THÉVENIN EQUIVALENT

 R_{TH} OUTPUT • ۰V


Parameters	Values	Unit
R1	1800	Ω
R2	990	Ω
R _{TH}	639	Ω
V _{TH}	1.77	V

Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[4]	Max	Unit
V _{DR}	V _{CC} for Data Retention		2.0			V
I _{CCDR} ^[9]	Data Retention Current	$\label{eq:constraint} \begin{split} & \frac{V_{CC}}{CE} = V_{DR} \\ & \overline{CE}_1 \geq V_{CC} - 0.2V, \ CE_2 \leq 0.2V, \\ & V_{IN} \geq V_{CC} - 0.2V \ or \ V_{IN} \leq 0.2V \end{split}$			12	μA
t _{CDR} ^[10]	Chip Deselect to Data Retention Time		0			ns
t _R ^[11]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform^[12]

Notes 11. <u>Full device</u> operation requires linear V_{CC} ramp from V_{DR} to $V_{CC}(min) \ge 100 \ \mu s$ or stable at $V_{CC}(min) \ge 100 \ \mu s$.

12. BHE. BLE is the AND of BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling BHE and BLE.

Switching Characteristics

Over the Operating Range^[13, 14]

Parameter	Description	45	45 ns		
Parameter	Description	Min	Мах	Unit	
READ CYCLE			1		
t _{RC}	Read Cycle Time	45		ns	
t _{AA}	Address to Data Valid		45	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		45	ns	
t _{DOE}	OE LOW to Data Valid		22	ns	
t _{LZOE}	OE LOW to LOW-Z ^[15]	5		ns	
t _{HZOE}	OE HIGH to High-Z ^[15, 16]		18	ns	
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low-Z ^[15]	10		ns	
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High-Z ^[15, 16]		18	ns	
t _{PU}	\overline{CE}_1 LOW and CE_2 HIGH to Power Up	0		ns	
t _{PD}	\overline{CE}_1 HIGH and CE_2 LOW to Power Down		45	ns	
t _{DBE}	BLE/BHE LOW to Data Valid		45	ns	
t _{LZBE}	BLE/BHE LOW to Low-Z ^[15]	10		ns	
t _{HZBE}	BLE/BHE HIGH to HIGH-Z ^[15, 16]		18	ns	
WRITE CYCL	E ^[17]		1		
t _{WC}	Write Cycle Time	45		ns	
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	35		ns	
t _{AW}	Address Setup to Write End	35		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Setup to Write Start	0		ns	
t _{PWE}	WE Pulse Width	35		ns	
t _{BW}	BLE/BHE LOW to Write End	35		ns	
t _{SD}	Data Setup to Write End	25		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High-Z ^[15, 16]		18	ns	
t _{LZWE}	WE HIGH to Low-Z ^[15]	10		ns	

Notes

<sup>Notes
13. Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 V/ns, timing reference levels of V_{CC}(typ)/2, input pulse levels of 0 to V_{CC}(typ), and output loading of the specified I_{OL}/I_{OH} as shown in "AC Test Loads and Waveforms" on page 4.
14. AC timing parameters are subject to byte enable signals (BHE or BLE) not switching when chip is disabled. See application note AN13842 for further clarification.
15. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZDE}, t_{HZCE}, t_{HZDE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
17. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.</sup>

Switching Waveforms

Figure 1 shows address transition controlled read cycle waveforms.^[18, 19]

Figure 1. Read Cycle No. 1

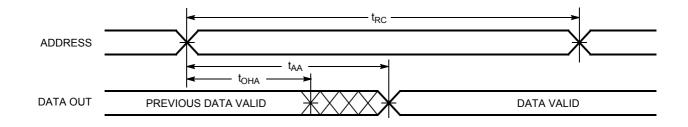
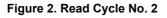
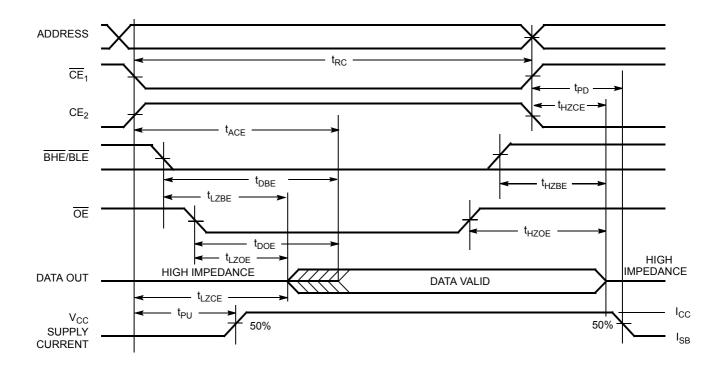




Figure 2 shows $\overline{\text{OE}}$ controlled read cycle waveforms.^[19, 20]

- Notes 18. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} , \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$.
- 19. WE is HIGH for read cycle.

^{20.} Address valid before or similar to \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)

Figure 3 shows $\overline{\text{WE}}$ controlled write cycle waveforms.^[17, 21, 22]

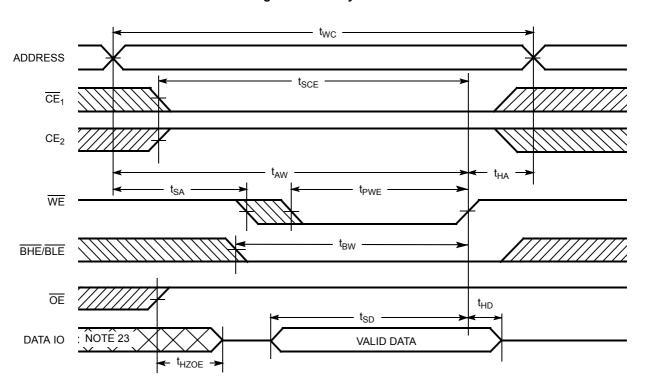


Figure 3. Write Cycle No. 1

Notes

21. Data IO is high impedance if $\overline{OE} = V_{IH}$. 22. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high impedance state.

23. During this period the IOs are in output state and input signals must not be applied.

Switching Waveforms (continued)

Figure 4 shows \overline{CE}_1 or CE_2 controlled write cycle waveforms.^[17, 21, 22]

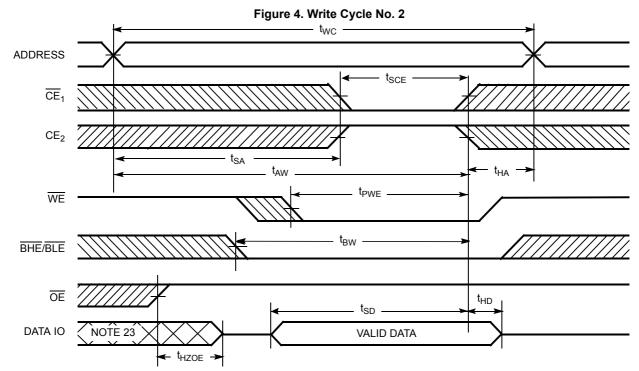
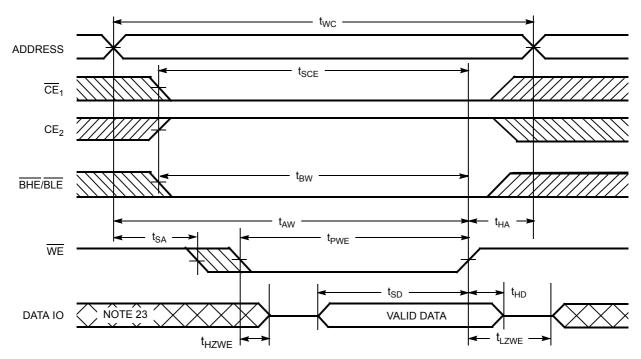
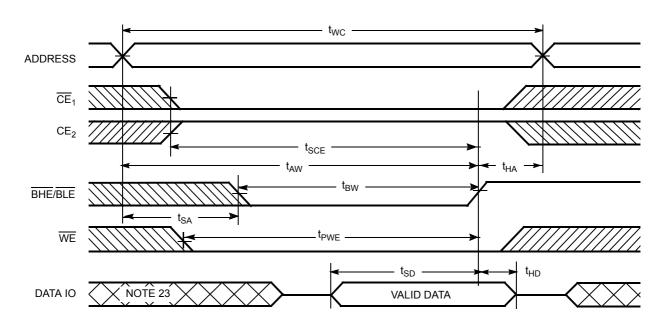



Figure 5 shows WE controlled, OE LOW write cycle waveforms.^[22]

Figure 5. Write Cycle No. 3

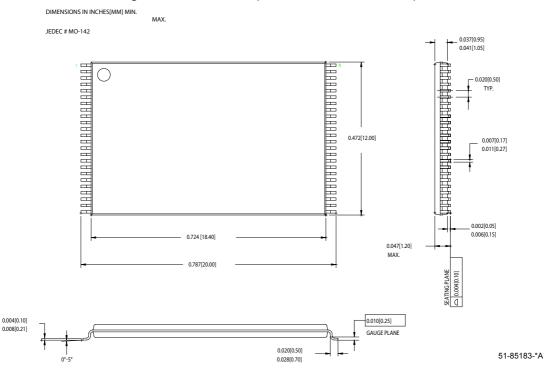


Switching Waveforms (continued)

Figure 6 shows BHE/BLE controlled, OE LOW write cycle waveforms.^[22]

Truth Table

CE1	CE2	WE	OE	BHE	BLE	Inputs Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High-Z	Deselect/Power Down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High-Z	Deselect/Power Down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High-Z	Deselect/Power Down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (IO ₀ –IO ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (IO ₀ –IO ₇); High-Z (IO ₈ –IO ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High-Z (IO ₀ –IO ₇); Data Out (IO ₈ –IO ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High-Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High-Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High-Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (IO ₀ –IO ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (IO ₀ –IO ₇); High-Z (IO ₈ –IO ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High-Z (IO ₀ –IO ₇); Data In (IO ₈ –IO ₁₅)	Write	Active (I _{CC})



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62167ELL-45ZXI	51-85183	48-pin TSOP I (Pb-free)	Industrial

Package Diagram

Figure 7. 48-Pin TSOP I (12 mm x 18.4 mm x 1.0 mm), 51-85183

Document #: 001-15607 Rev. *A

Page 11 of 12

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

MoBL is a registered trademark and More Battery Life is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sophereby grants to licensee a personal, non-exclusive, non-transferable licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement

Document History Page

Document Title: CY62167E MoBL [®] 16-Mbit (1M x 16 / 2M x 8) Static RAM Document Number: 001-15607						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	1103145	See ECN	VKN	New Data Sheet		
*A	1138903	See ECN	VKN	Converted from preliminary to final Changed I _{CC(max)} spec from 2.8 mA to 4.0 mA for f=1MHz Changed I _{CC(typ)} spec from 22 mA to 25 mA for f=f _{max} Changed I _{CC(max)} spec from 25 mA to 30 mA for f=f _{max} Added footnote# 8 related to V _{IL} Changed I _{CCDR} spec from 10 μ A to 12 μ A Added footnote# 14 related to AC timing parameters		